Solubility of Some Ionic Compounds in Water | Always Soluble Alkali metals = Ammonium = Acetate = Chlorate = Nitrate = Perchlorate = | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺
NH ₄ ⁺
$C_2H_3O_2$ $^-$
CIO_3 $^-$
NO_3 $^-$ | AAA
CNP | | | | |--|---|------------|--|--|--| | Generally Soluble | | | | | | | | Soluble <u>except</u> : Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺ | AP-H | | | | | F ⁻ | Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Mg ²⁺ | CBS-PM | | | | | Sulfate = SO ₄ ²⁻ | Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺ | CBS-P | | | | | Generally Insoluble | | | | | | | O ²⁻ , OH ⁻ | Insoluble <u>except</u> : Alkali metals and NH ₄ ⁺ | AA | | | | | | Somewhat soluble: Ca ²⁺ , Ba ²⁺ , Sr ²⁺ | CBS | | | | | CO ₂ ²⁻ , CO ₃ ²⁻
S ²⁻ , SO ₃ ²⁻
PO ₄ ³⁻
CrO ₄ ²⁻ , Cr ₂ O ₄ ²⁻ | Insoluble <u>except</u> : Alkali metals and NH ₄ + | AA | | | | ## **Activity Series Chart** | Metals | Non-Metals | |---------|-------------| | MICIAI2 | NVII-MGLAI3 | | Most
Active | <u>Name</u> | <u>Symbol</u> | <u>Name</u> | <u>Symbol</u> | |-----------------|-------------|---------------|-------------|----------------| | Active | Lithium | Li | Fluorine | F | | | Potassium | K | Chlorine | CI | | | Barium | Ва | Bromine | Br | | | Strontium | Sr | Iodine | $oldsymbol{I}$ | | | Calcium | Ca | | | | | Sodium | Na | | | | | Magnesium | Mg | | | | | Aluminum | Al | | | | | Manganese | Mn | | | | | Zinc | Zn | | | | | Iron | Fe | | | | | Cadmium | Cd | | | | | Cobalt | Co | | | | | Nickel | Ni | | | | | Tin | Sn | | | | | Lead | Pb | | | | | Hydrogen | H | | | | | Copper | Cu | | | | | Silver | Ag | | | | | Mercury | Hg | | | | V | Gold | Au | | | | Least
Active | | | | | *** Elements CANNOT replace anything ABOVE them. The reaction DOES NOT OCCUR in this situation. *** Examples: ZnCl₂ + Mg → MgCl₂ Magnesium is above Zinc so the reaction happens ZnCl₂ + Cu → No Reaction Copper is below Zinc so no reaction happens